Ligand design and in situ spectroscopy

The main objective of this part of the research is to study the relationship between the structure of the catalyst and its performance in catalysis. In addition to the well-known steric and electronic effects, and the bite-angle, we study the use of ligands that participate in the reactions (ligand non-innocence).  We have lab infrastructure that allows in situ spectroscopy by various ways (IR, NMR, UV-Vis, Stop-flow, CD-sepctroscopy, spectro-electrochemistry) in order to identify the resting state of the catalytic cycle. In combination with kinetic analysis and DFT calculations this provide crucial data to support our reaction mechanisms, which in turn is the basis for rational ligand design. We use these strategies for the development of novel metal complexes in catalysis, but also for the other topics in which understanding the catalytic action is of importance.

Selected References:
  • Koelewijn, J. M.; Lutz, M.; Dzik, W. I.; Detz, R. J.; and Reek, J. N. H. Reaction Progress Kinetic Analysis as a Tool To Reveal Ligand Effects in Ce(IV)-Driven IrCp*-Catalyzed Water Oxidation. ACS Catal 2016, 6, 3418-3427.
  • Raoufmoghaddam, S.; Mannathan, S.; Minnaard, A. J.; de Vries, J. G.; de Bruin, B.; and Reek, J. N. H. Importance of the Reducing Agent in Direct Reductive Heck Reactions. ChemCatChem 2018, 10, 266-272.
  • Vreeken, V.; Broere, D. L. J.; Jans, A. C. H.; Lankelma, M.; Reek, J. N. H.; Siegler, M. A.; and van der Vlugt, J. I. Well-Defined Dinuclear Gold Complexes for Preorganization-Induced Selective Dual Gold Catalysis. Angew. Chem. Int. ed. 2016, 55, 10042-10046.
  • van de Watering, F. F.; Stroek, W.; van der Vlugt, J. I.; de Bruin, B.; Dzik, W. I.; and Reek, J. N. H. Coordination of 3-Methylindole-Based Tripodal Tetraphosphine Ligands to Iron( plus II), Cobalt( plus II), and Nickel( plus II) and Investigations of their Subsequent Two-Electron Reduction. Eur.J.Inorg. Chem. 2018, 1254-1265.
  • Murugesan, K.; Bheeter, C. B.; Linnebank, P. R.; Spannenberg, A.; Reek, J. N. H.; Jagadeesh, R. V.; and Beller, M. Nickel-Catalyzed Stereodivergent Synthesis of E- and Z-Alkenes by Hydrogenation of Alkynes. ChemSusChem 2019, 12, 3363-3369.
  • Bai, S. -T.; Sinha, V.; Kluwer, A. M.; Linnebank, P. R.; Abiri, Z.; de Bruin, B.; and Reek, J. N. H. Rational Redesign of a Regioselective Hydroformylation Catalyst for 3-Butenoic Acid by Supramolecular Substrate Orientation. ChemCatChem 2019, 11, 5322-5329
  • Wolzak, L. A.; van der Vlugt, J. I.; van den Berg, K. J.; Reek, J. N. H.; Tromp, M.; and Korstanje, T. J. Titanium-catalyzed esterification reactions: beyond Lewis acidity. ChemCatChem 2020, 12, 5229-5235.
  • Hessels, J.; Masferrer-Rius, E.; Yu, F.; Detz, R. J.; Klein Gebbink, R. J. M.; and Reek, J. N. H. Nickel is a Different Pickle: Trends in Water Oxidation Catalysis for Molecular Nickel Complexes. ChemSusChem 2020, 13, 6629-6634
blanco-1200x800
blanco-1200x800