The Ring Launching Solar Cell: The RING matters ## Tessel Bouwens, Jenny Hasenack, Simon Mathew, Joost N. H. Reek Supramolecular & Homogeneous Catalysis Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam ## Introduction Today, n-type Dye-sensitized solar cells (DSSCs) are a well-established exceeding 14% photonconversion efficiency (PCE). The complementary p-type DSSC opens new avenues to tandem solar cells to have greater PCE for future application in both photovoltaics and solar-driven fuel generation. However, p-type DSSCs are relatively unexplored and the efficiency remains low due to charge recombination. Blue arrows => the forward electron propagation red arrows => the unfavorable recombnation How to solve this recombination issue? Spatial separation of charges \rightarrow Donor- π -Acceptor Alternative strategy: Vectorial electron transfer → Supramolecular approach of pre-organization of the redox mediator High affinity when oxidized Low affinity upon reduction² Pre-organization of the redox mediator leads to increased photocurrents in DSSCs What is the difference between a cationic or neutral ring in photovoltaic properties of the solar cell? #### Design 2. Neutral Ring 1. Cationic Ring • NDI–RING has a low binding affinity \rightarrow (~100 M⁻¹) The reduction potential is more negative than MV-RING⁴⁺ > (380 mV and 50 mV versus NHE) Binding studies show that • The RING⁴⁺ has a high binding affinity for the DNP recognition sites: $K_{ass} = 3.4 \times 10^4 \, M^{-1}$ $\alpha = 0.7$ • The RING⁴⁺ is able to quench in total 83% of the toal fluorescence of the dye at 630 nm. FTO NiO Photovoltaic properties Photovoltaic properties Dye 100 mW ⋅ cm⁻² irridiation 50 mW ⋅ cm⁻² irridiation • V_{OC} = 307 • FF = 0.35 • $\eta = 0.02\%$ ---- P_N (0.3% RING^{4+/3+} + MV^{2+/+} 0.00 0.05 0.10 0.15 0.20 0.25 0.30 MV–RING⁴⁺ > Pre-organization of the redox mediator by Wavelength (nm) ## Proposed operational mode pseudorotaxane formation leads to DSSC exhibiting 10 x higher photocurrents. Excitation of the P_N dye leads to eT to the RING4+. Reduction of **RING**⁴⁺ to RING³⁺ leads to ring dissociation. Upon dissociation RING4+ will bind the the DNP and the e⁻ can hop from $RING^{3+}$ to MV^{2+} . Regeneration of the redox couple to complete the circuit. The operational principle of the **NDI-RING** is supposed to proceed via a similar mechanism ## Conclusions and Outlook - New type of p-type DSSC is made where the redox acceptor is preorganized to the dye. This P_N dye is based on the P1 dye functionalized with DNP moeities that can form pseudorotaxanes with the electron acceptor **MV-RING**⁴⁺ ($K_{ass} = 3 \times 10^4 \text{ M}^{-1}$) or **NDI-RING** ($K_{ass} \approx 1 \times 10^2 \text{ M}^{-1}$). - Solar cells based on pseudorotaxanes afforded photocurrents of one order of magnitude higher compared to the control experiments (no pseudorotaxane formation). - Neutral **NDI–RING** shows 50 x higher photocurrents than the cationic **MV–** RING⁴⁺. - Future research will focus on characterization and optimization of system - NDI-RING ^{1.} B. O'Regan, M. Gratzel, Nature, 1991, 353, 737-740. ^{2.} P. R. Ashton, V. Balzani, O. Kocian, L. Prodi, N. Spencer and J. F. Stoddart, J. Am. Chem. Soc., 1998, 120, 11190–11191. ^{3.} P. Qin, H. J. Zhu, T. Edvinsson, G. Boschloo, A. Hagfeldt and L. C. Sun, J. Am. Chem. Soc., 2008, 130, 17629. 4. T. Bouwens, S. Mathew, J. N. H. Reek, Faraday Discuss., 2019, accepted.